
Simulink® Coder™

Getting Started Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Coder™ Getting Started Guide
© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Product Overview

1
Product Description . 1-2

Code Generation Technology . 1-3

Target Environments and Applications 1-4
About Target Environments . 1-4
Types of Target Environments Supported By Simulink®

Coder . 1-4
Applications of Supported Target Environments 1-7

Algorithm Development Options . 1-9
Simulink and Stateflow Model . 1-10
MATLAB Code with Simulink Model 1-23

V-Model for System Development 1-25
What Is the V-Model? . 1-25
Types of Simulation and Prototyping in the V-Model 1-26
Types of In-the-Loop Testing in the V-Model 1-28
Mapping of Code Generation Goals to the V-Model 1-29

Getting Started Examples

2
About the Examples . 2-2
Introduction . 2-2
Prerequisites . 2-2
Required Files . 2-3

Getting Familiar with the Example Model and Testing
Environment . 2-4

iii

About This Example . 2-4
Understanding the Functional Design of the Model 2-5
Viewing the Top Model . 2-5
Viewing the Subsystems . 2-6
Understanding the Simulation Testing Environment 2-8
Checking the Model for Adverse Conditions and Simulation
Settings . 2-13

Running Simulation Tests . 2-14
Key Points . 2-16
Learn More . 2-16

Configuring the Model and Generating Code 2-18
About This Example . 2-18
Configuring the Model for Code Generation 2-19
Saving Your Model Configuration as a MATLAB
Function . 2-20

Checking the Model for Adverse Conditions and Code
Generation Settings . 2-21

Generating Code for the Model . 2-22
Reviewing the Generated Code . 2-22
Generating an Executable . 2-24
Key Points . 2-24
Learn More . 2-25

Configuring the Data Interface . 2-26
About This Example . 2-26
Declaring Data . 2-27
Using Data Objects . 2-28
Adding New Data Objects . 2-31
Enabling Data Objects for Generated Code 2-32
Effects of Simulation on Data Typing 2-33
Managing Data . 2-34
Key Points . 2-35
Learn More . 2-35

Calling External C Functions from a Model and
Generated Code . 2-37
About This Example . 2-37
Including External C Functions in a Model 2-38
Creating a Block That Calls a C Function 2-38
Validating External Code in the Simulink Environment . . 2-40
Validating C Code as Part of a Model 2-42
Calling a C Function from Generated Code 2-44

iv Contents

Key Points . 2-44
Learn More . 2-45

Index

v

vi Contents

1

Product Overview

• “Product Description” on page 1-2

• “Code Generation Technology” on page 1-3

• “Target Environments and Applications” on page 1-4

• “Algorithm Development Options” on page 1-9

• “V-Model for System Development” on page 1-25

1 Product Overview

Product Description
Simulink® Coder™ (formerly Real-Time Workshop®) generates and
executes C and C++ from Simulink® diagrams, Stateflow® charts, and
MATLAB® functions. The generated source code can be used for real-time
and nonreal-time applications, including simulation acceleration, rapid
prototyping, and hardware-in-the-loop testing. You can tune and monitor the
generated code using Simulink or run and interact with the code outside
MATLAB and Simulink.

1-2

Code Generation Technology

Code Generation Technology
MathWorks® Code generation technology generates C or C++ code and
executables for algorithms that you model programmatically with MATLAB
or graphically in the Simulink environment. You can generate code for
any MATLAB functions and Simulink blocks that are useful for real-time
or embedded applications. The generated source code and executables for
floating-point algorithms match the functional behavior of MATLAB code
execution and Simulink simulations to high degrees of fidelity. Using the
Simulink® Fixed Point™ product, you can generate fixed-point code that
provides a bit-wise accurate match to model simulation results. Such broad
support and high degrees of accuracy are possible because code generation is
tightly integrated with the MATLAB and Simulink execution and simulation
engines. The built-in accelerated simulation modes in Simulink use code
generation technology.

Code generation technology and related products provide tooling that you can
apply to the V-model for system development. The V-model is a representation
of system development that highlights verification and validation steps in
the development process. For more information about the V-model and how
MathWorks code generation technology and related products provide tooling
that you can apply to the process, see “V-Model for System Development”
on page 1-25.

1-3

http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simfixed/

1 Product Overview

Target Environments and Applications

In this section...

“About Target Environments” on page 1-4

“Types of Target Environments Supported By Simulink® Coder” on page 1-4

“Applications of Supported Target Environments” on page 1-7

About Target Environments
In addition to generating source code for a model or subsystem, the code
generator produces make or project files to build an executable for a specific
target environment. The generated make or project files are optional. If
you prefer, you can build an executable for the generated source files by
using an existing target build environment, such as a third-party integrated
development environment (IDE). Applications of generated code range from
calling a few exported C or C++ functions on a host computer to generating a
complete executable using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

The code generator provides built-in system target files that generate, build,
and execute code for specific target environments. These system target files
offer varying degrees of support for interacting with the generated code to
log data, tune parameters, and experiment with or without Simulink as the
external interface to your generated code.

Types of Target Environments Supported By Simulink
Coder
Before you select a system target file, identify the target environment on
which you expect to execute your generated code. The most common target
environments include those environmens listed in the following table.

1-4

Target Environments and Applications

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®1 environment that uses a non-real-time
operating system, such as Microsoft® Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
those operating systems might suspend code execution to run an operating
system service and then, after providing the service, continue code
execution. Therefore, the executable for your generated code might run
faster or slower than the sample rates that you specified in your model.

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• xPC Target™ system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time and behaves deterministically. The
exact nature of execution varies based on the particular behavior of the
system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and run as
a standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) to process communication signals to inexpensive
8-bit fixed-point microcontrollers in mass production (for example, electronic
parts produced in the millions of units). Embedded microprocessors can:

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.

1-5

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/

1 Product Overview

Target
Environment

Description

• Use a full-featured RTOS

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with code generation

A target environment can:

• Have single- or multiple-core CPUs

• Be a standalone computer or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits, such as
early verification of component correctness.

The following figure shows example target environments for code generated
for a model.

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-6

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

Target Environments and Applications

Applications of Supported Target Environments
The following table lists several ways that you can apply code generation
technology in the context of the different target environments.

Application Description

Host Computer

Accelerated simulation You apply techniques to speed up the execution of model
simulation in the context of the MATLAB and Simulink
environments. Accelerated simulations are especially
useful when run time is long compared to the time
associated with compilation and checking whether the
target is up to date.

Rapid simulation You execute code generated for a model in nonreal time
on the host computer, but outside the context of the
MATLAB and Simulink environments.

System simulation You integrate components into a larger system. You
provide generated source code and related dependencies
for building a system in another environment or in
a host-based shared library to which other code can
dynamically link.

Model intellectual property protection You generate a Simulink shareable object library for a
model or subsystem for use by a third-party vendor in
another Simulink simulation environment.

Real-Time Simulator

Rapid prototyping You generate, deploy, and tune code on a real-time
simulator connected to the system hardware (for
example, physical plant or vehicle) being controlled.
This design step is crucial for validating whether a
component can adequately control the physical system.

System simulation You integrate generated source code and dependencies
for components into a larger system that is built in
another environment. You can use shared library files
for intellectual property protection.

1-7

1 Product Overview

Application Description

On-target rapid prototyping You generate code for a detailed design that you can
run in real time on an embedded microprocessor while
tuning parameters and monitoring real-time data. This
design step allows you to assess, interact with, and
optimize code, using embedded compilers and hardware.

Embedded Microprocessor

Production code generation From a model, you generate code that is optimized for
speed, memory usage, simplicity, and if necessary,
compliance with industry standards and guidelines.

Software-in-the-loop (SIL) testing You execute generated code with your plant model
within Simulink to verify successful conversion of
the model to code. You might change the code to
emulate target word size behavior and verify numerical
results expected when the code runs on an embedded
microprocessor. Or, you might use actual target word
sizes and just test production code behavior.

Processor-in-the-loop (PIL) testing You test an object code component with a plant
or environment model in an open- or closed-loop
simulation to verify successful model-to-code conversion,
cross-compilation, and software integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or embedded computing
unit (ECU), using a real-time target environment.

1-8

Algorithm Development Options

Algorithm Development Options

In this section...

“Simulink and Stateflow Model” on page 1-10

“MATLAB Code with Simulink Model” on page 1-23

You can use MathWorks code generation technology to generate standalone
C or C++ source code for rapid prototyping, simulation acceleration, and
hardware-in-the-loop (HIL) simulation:

• By developing Simulink models and Stateflow charts, and then generating
C/C++ code from the models and charts with the Simulink Coder product

• By integrating MATLAB code into Simulink models, using code generation
from MATLAB and the Simulink MATLAB Function block, and then
generating C/C++ code with the Simulink Coder product

The following figure shows these design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

1-9

1 Product Overview

�����
��	
������

���������������
�������	
��

��	
��

��	
����������
����

�����
��������������

��������

��������
�����

��������
���

�����������
 !"���������

"#���������������
$�����������������%��������&

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and MATLAB
functions, see “Patterns for C Code” in the Embedded Coder™ documentation.

Simulink and Stateflow Model

About the Workflow
Simulink support for dynamic system simulation, conditional execution of
system semantics, and large model hierarchies provides an environment
for modeling periodic and event-driven algorithms commonly found in
embedded systems. You can generate code for most Simulink blocks and
many MathWorks products.

The typical workflow for applying the Simulink Coder software to the
application development process is:

1-10

Algorithm Development Options

1 Map your application requirements to available configuration options.

2 Adjust configuration options as necessary.

3 Run the Model Advisor tool.

4 If necessary, tune configuration options based on the Model Advisor report.

5 Generate code for your model.

6 Repeat steps 2 to 5, until you successfully verify the generated code.

7 Build an executable program image.

8 Verify that the generated program produces results that are equivalent
to those of your model simulation.

9 Save the configuration, and alternative configurations, with the model.

10 Use Simulink® Report Generator™ to automatically document the project.

Sections following the figure describe the steps in more detail.

1-11

1 Product Overview

���������������'�(���������
������������������������

��)��������������������������

'�����������%����

*������������

������"#��������+������

,����-�"#��������+������

.����������%�
�����������������

!�������+��)��

�������������
'�(�����
	�����/

������0/

'�����������
����������/

!���

1��

.�

1��

.�

.�

1��

Mapping Application Requirements to Configuration Options
The first step in applying the Simulink Coder software to the application
development process is to consider how your application requirements,
particularly with respect to debugging, traceability, efficiency, and safety,
map to code generation options available through the Simulink Configuration
Parameters dialog box. The following graphic shows the Code Generation
pane of the Configuration Parameters dialog box.

1-12

Algorithm Development Options

Parameters that you set in the various panes of the Configuration Parameters
dialog box affect the behavior of a model in simulation and the code generated
for the model. The Simulink Coder software automatically adjusts the
available configuration parameters and their default settings based on
your target selection. For example, the preceding dialog box display shows
default settings for the generic real-time (GRT) target. Become familiar with
the various parameters and be prepared to adjust settings to optimize a
configuration for your application.

As you review the parameters, consider: questions such as the following:

• What settings will help you debug your application?

• What is the highest priority for your application — efficiency, traceability,
extra safety precaution, or other criteria?

• What is the second highest priority?

• Can the priority at the start of the project differ from the priority required
for the end of the project? What tradeoffs can you make?

Once you have answered these questions, you can either:

• Use the Code Generation Advisor to identify changes to model constructs
and settings that improve the generated code. For more information, see
“Application Objectives” in the Simulink Coder User’s Guide.

1-13

1 Product Overview

• Review “Recommended Settings Summary”, which summarizes the impact
of each configuration option on efficiency, traceability, safety precautions,
and debugging, and indicates the default (factory) configuration settings for
the GRT target. For additional details, click the links in the Configuration
Parameter column.

To see the settings that the Code Generation Advisor recommends, review the
“Recommended Settings Summary”.

If you use a specific embedded target, a Stateflow target, or fixed-point blocks,
consider the mapping of many other configuration parameters. For details,
see the documentation specific to your target environment.

Adjusting Configuration Settings
Once you have mapped your application requirements to appropriate
configuration parameter settings, adjust the settings accordingly. Using
the Default column in “Mapping Application Requirements to the Solver
Pane”, identify the configuration parameters to modify. Then, open the
Configuration Parameters dialog box or Model Explorer and make the
necessary adjustments.

Examples in Chapter 2, “Getting Started Examples” guide you through
exercises that modify configuration parameter settings. For more information
on setting configuration parameters for code generation, see “Code
Generation” in the Simulink Coder documentation. For descriptions of
parameters specific to the Simulink Coder product, see “Configuration
Parameters for Simulink Models” in the Simulink Coder reference
documentation.

Note You also can use get_param and set_param to individually access most
configuration parameters both interactively and in scripts. The relevant
configuration parameters are listed in the “Parameter Reference” in the
Simulink Coder documentation.

1-14

Algorithm Development Options

Running the Model Advisor
Before you generate code, it is good practice to run the Model Advisor. Based
on a list of options that you select, this tool analyzes your model and its
parameter settings. The tool then generates results that list findings with
information on how to correct and improve the model and its configuration.

To start the Model Advisor, in your model window, select Tools > Model
Advisor. A new window opens listing specific diagnostics that you can
individually select or clear. Some examples of the diagnostics are:

• Identify blocks that generate expensive saturation and rounding code

• Check optimization settings

• Identify questionable software environment specifications

1-15

1 Product Overview

The Model Advisor is particularly useful for identifying aspects of your model
that limit code efficiency or impede deployment of production code. The
following figure shows the Model Advisor.

For more information on using the Model Advisor, see “Getting Advice
About Optimizing Models for Code Generation” in the Simulink Coder
documentation.

1-16

Algorithm Development Options

Generating Code
After fine-tuning your model and its parameter settings, you can generate
code. Typically, the first time through the process of applying Simulink Coder
software for an application, you want to generate code without compiling and
linking it into an executable program. Some reasons for not compiling and
linking the code are:

• Inspecting the generated code. Is the Simulink Coder code generator
creating what you expect?

• Integrating custom handwritten code.

• Experimenting with configuration option settings.

You specify code generation by selecting the Generate code only check box
available on the Code Generation pane of the Configuration Parameters
dialog box (changing the label of the Build button to Generate code). The
code generator then analyzes the block diagram that represents your model,
generating C code, and placing the resulting files in a build folder within
your current working folder.

After generating the code, inspect it. Is it what you expected? If not,
determine what model and configuration changes to make, rerun the Model
Advisor, and regenerate the code. When you are satisfied with the generated
code, build an executable program image, as described in “Building an
Executable Program” on page 1-18.

For details on the Generate code only option, see “Generate code only”.

Verifying the Generated Code
Verify whether the generated code behaves correctly, generates correct results,
and meets required performance by using these verification techniques:

• “Logging Data for Analysis”

• “Simulation and Code Comparison”

• “Code Tracing”

• “Code Execution Profiling”

1-17

1 Product Overview

Building an Executable Program
When you are satisfied with the code generated for your model, build an
executable program image. If the Generate code only option on the Code
Generation pane of the Configuration Parameters dialog box is selected,
clear it. This action changes the label of the Generate code button back
to Build.

To initiate a build, click the Build button. The code generator:

1 Compiles the model — The Simulink Coder software analyzes your block
diagram (and any models referenced by Model blocks) and compiles an
intermediate hierarchical representation in a file called model.rtw.

2 Generates C code — The Target Language Compiler reads model.rtw,
translates it to C code, and places the C file in a build folder within your
working folder.

When you click Generate code processing stops. See “Generating Code”
on page 1-17.

3 Generates a customized makefile — The Simulink Coder software
constructs a makefile from the appropriate target makefile template and
writes it in the build folder.

4 Generates an executable program — Instructs your system’s make utility
to use the generated makefile to compile the generated source code, link
object files and libraries, and generate an executable program file called
model (UNIX) or model.exe (Microsoft Windows). The makefile places the
executable image in your working folder.

If you select Create code generation report on the Code
Generation > Report pane, a navigable summary of source files is
produced when the model is built. The report files occupy folder html in
the build folder. The report contents vary depending on the target, but all
reports include links to generated source files.

If the software detects code generation constraints for your model, it issues
warning or error messages.

1-18

Algorithm Development Options

The following figure illustrates the complete process. The box labeled
“Automated build process” highlights portions of the process that the
Simulink Coder software executes.

��������
�����

�������������
����+���������

2���3��%������
���������
��������
��������

1���
	�������
��������

����������

���������
������������

"#�������
���������

*�������
����

*�������
��������

����	
����

�����������	���

������
��������

����	���

����	����
+������

����������

����	��
����	��
����		�
�������

In the Configuration Parameters dialog box, in the Build process section
of the Code Generation pane, the MATLAB command file specified by the
Make command field controls an internal portion of the build process. By
default, the name of the command file is make_rtw. The build process invokes
this file for most targets. Any options specified in this field are passed into the
makefile-based build process. In some cases, targets customize the make_rtw
command. However, preserve the arguments used by the function.

1-19

1 Product Overview

Although the command may work for a standalone model, if you use the
make_rtw command at the command line you might get an error. For example,
if you have multiple models open, verify that:

• The current subsystem contains the model that you want to build. You can
find the current subsystem by entering gcs in the MATLAB Command
Window.

• In the Configuration Parameters dialog box, theMake command specified
for the target environment is make_rtw.

• The model includes Model blocks. Models containing Model blocks do not
build by using make_rtw directly.

To build (or generate code for) a model from the MATLAB Command Window,
use one of the following rtwbuild commands, where model is the name of
the model:

rtwbuild model
rtwbuild('model')

Verifying the Executable Program
Once you have an executable image, run the image and compare the results to
the results of your model simulation.

1 Log output data produced by simulation runs.

2 Log output data produced by executable program runs.

3 Compare the results of the simulation and executable program runs.

Does the output match? Can you explain any differences? Do you need to
eliminate any differences? You might need to revisit and possibly fine-tune
your block and configuration parameter settings.

For an example, see “Verifying the Generated Code” on page 1-17.

1-20

Algorithm Development Options

Naming and Saving the Configuration Set
When you close a model, save it to preserve your configuration settings
(unless your recent changes are dispensable). If you want to maintain several
alternative configurations for a model (e.g., GRT and Rapid Simulation
targets, inline parameters on/off, different solvers, etc.), you can set up a
configuration set for each set of configuration parameters and give each set an
identifying name. You can do this easily in Model Explorer.

To name and save a configuration:

1 Open Model Explorer from the model window by selecting Model
Explorer > View.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Under the mode name, click the Configuration (active) node.

The Configuration Parameters dialog box opens in the right pane.

4 In the Configuration Parameters pane, in the Name field, type a name
you want to give the current configuration.

5 Click Apply. In the Model Hierarchy pane, the name of the active
configuration changes to the name that you typed.

6 Save the model.

Adding and Copying Configuration Sets. You can save the model with
more than one configuration so that you can instantly reconfigure it at a later
time. Copy the active configuration to a new one, or add a new one, then
modify and name the new configuration:

1 Open Model Explorer from your model window by selecting Model
Explorer > View.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

1-21

1 Product Overview

3 To add a new configuration set, while the model is selected in the Model
Hierarchy pane, from the Add menu, select Configuration Set or on the
toolbar, click the yellow gear icon:

In the Model Hierarchy pane, you see a new configuration set named
Configuration.

4 To copy an existing configuration set, in the Model Hierarchy pane,
right-click its name and drag it to the + sign in front of the model name.

In the Model Hierarchy pane, you see a new configuration set with a
numeral (for example, 1) appended to its name.

5 If you want, rename the new configuration by right-clicking it, selecting
Properties, and in the Configuration Parameters dialog box that opens,
type the new name in the Name field. Then click Apply.

6 Make the new configuration the active one. In theModel Hierarchy pane,
right-click the new configuration. From the context menu, select Activate.

In the right pane, the content of the Is Active field changes from no to yes.

7 Save the model.

Documenting the Project
Consider documenting the design and implementation details of your project
to facilitate:

• Project verification and validation.

• Collaboration with other individuals or teams, particularly if dependencies
exist.

• Archiving the project for future reference.

Use the Simulink Report Generator software to document a code generation
project. You can generate a comprehensive Rich Text Format (RTF),

1-22

Algorithm Development Options

Extensible Markup Language (XML), or Hypertext Markup Language
(HTML) report that includes:

• Model name and version

• Simulink Coder product version

• Date and time the code generator created the code

• List of generated source and header (include) files

• Optimization and Simulink Coder target selection and build process
configuration settings

• Mapping of subsystem numbers to subsystem labels

• Listings of generated and custom code for the model

To generate a code generation report, see the demo rtwdemo_codegenrpt and
“Simulink Report Generator Report” in the Simulink Coder documentation.
For details about the Report Generator, see the Simulink Report Generator
User’s Guide.

MATLAB Code with Simulink Model
You might use both MATLAB code and Simulink models for a Model-Based
Design project if you:

• Start by using MATLAB to develop an algorithm for research and early
development.

• Later want to integrate the algorithm into a graphical model for system
deployment and verification.

Benefits of this approach include:

• Richer system simulation environment

• Ability to verify the MATLAB code

• Simulink Coder and Embedded Coder C/C++ code generation for the model
and MATLAB code

1-23

1 Product Overview

The following table summarizes how to generate C or C++ code, using this
approach, and identifies where you can find more information.

If you develop
algorithms using...

You generate code by... For more information, see...

Code generation from
MATLAB and Simulink

Including MATLAB code in
Simulink models or subsystems
by using the MATLAB Function
block.

To use this block, you can do
one of the following:

• Copy your code into the block.

• Call your code from the
block by referencing the
appropriate files on the
MATLAB path.

Code generation from MATLAB
documentation

MATLAB Function block in the
Simulink documentation

1-24

V-Model for System Development

V-Model for System Development

In this section...

“What Is the V-Model?” on page 1-25

“Types of Simulation and Prototyping in the V-Model” on page 1-26

“Types of In-the-Loop Testing in the V-Model” on page 1-28

“Mapping of Code Generation Goals to the V-Model” on page 1-29

What Is the V-Model?
The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the V identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side of the V focuses on the verification
and validation of steps cited on the left side, including software integration
and system integration.

1-25

1 Product Overview

System Specification

Coding

Software Detailed
Design

System Integration
and Calibration

 Hardware-in-the-loop
(HIL) testing

 Processor-in-the-loop
(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop
(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and its role in the process, you might focus on
one or more of the steps called out in the V-model or repeat steps at several
stages of the V-model. Code generation technology and related products
provide tooling that you can apply at each step.

Types of Simulation and Prototyping in the V-Model
The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

1-26

V-Model for System Development

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
nonreal time

Test new ideas
and research

Refine and
calibrate
designs during
development
process

Execution
hardware

Host computer Host computer

Standalone
executable
runs outside
of MATLAB
and Simulink
environments

PC or nontarget
hardware

Embedded
computing
unit (ECU) or
near-production
hardware

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis
on code efficiency
and I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data during
verification

Can accelerate
Simulink
simulations with
Accelerated and

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus
less expensive and
more convenient

1-27

1 Product Overview

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Rapid Accelerated
modes

without rebuilding
the model

Can connect
to Simulink
to monitor
signals and tune
parameters

Types of In-the-Loop Testing in the V-Model
The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
because code runs
on hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

Execution
platforms

Host Target Host Target

1-28

V-Model for System Development

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Ease of use
and cost

Desktop
convenience

Executes only in
Simulink

No cost for
hardware

Executes on desk
or test bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes only on
host computer
with Simulink
and integrated
development
environment
(IDE)

No cost for
hardware

Executes on test
bench or in lab

Uses hardware
— processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real-time
capability

Not real time Not real time
(between samples)

Not real time
(between
samples)

Hard real time

Mapping of Code Generation Goals to the V-Model
The following tables list goals that you might have, as you apply code
generation technology, and where to find guidance on how to meet those
goals. Each table focuses on goals that pertain to a step of the V-model for
system development.

• Documenting and Validating Requirements on page 1-30

• Developing a Model Executable Specification on page 1-33

• Developing a Detailed Software Design on page 1-36

• Generating the Application Code on page 1-41

• Integrating and Verifying Software on page 1-44

• Integrating, Verifying, and Calibrating System Components on page 1-48

1-29

1 Product Overview

Documenting and Validating Requirements

Goals Related Product
Information

Demos

Capture requirements in
a document, spreadsheet,
data base, or requirements
management tool

Simulink Report Generator
documentation

Third-party vendor tools
such as Microsoft Word,
Microsoft® Excel®, raw HTML,
or IBM®Rational® DOORS®

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated
with a model

Simulink® Verification and
Validation™

“Requirements Traceability”
in the Simulink Verification
and Validation documentation

Bidirectional tracing in
Microsoft Word, Microsoft
Excel, HTML, and Telelogic®

DOORS

slvnvdemo_fuelsys_docreq

Include requirements tags in
generated code

Simulink Verification and
Validation

“Requirements Information
in Generated Code” in the
Simulink Verification and
Validation documentation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

Embedded Coder

“Code Tracing”

rtwdemo_hyperlinks

1-30

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/embedded-coder/

V-Model for System Development

Documenting and Validating Requirements (Continued)

Goals Related Product
Information

Demos

Verify, refine, and test concept
model in nonreal time on a
host system

“Model Architecture and
Design” in the Simulink Coder
documentation

“Model Architecture and
Design” in the Embedded
Coder documentation

“Running Simulations” and
“Accelerating Models” in the
Simulink documentation

rtwdemo_f14
rtwdemo_fuelsys_publish

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations with
varying data sets, interactively
or programmatically with
scripts, without rebuilding the
model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that
include components and
an environment or plant that
requires variable-step solvers
and zero-crossing detection

“Rapid Simulations”

“Host/Target Communication ”
rtwdemo_rsim_param_survey_-
script
rtwdemo_rsim_batch_script
rtwdemo_rsim_param_tuning

Distribute simulation runs
across multiple computers

SystemTest™

SystemTest documentation

1-31

http://www.mathworks.com/products/systemtest/

1 Product Overview

Documenting and Validating Requirements (Continued)

Goals Related Product
Information

Demos

MATLAB® Distributed
Computing Server™
documentation

Parallel Computing Toolbox™
documentation

1-32

V-Model for System Development

Developing a Model Executable Specification

Goals Related Product
Information

Demos

Produce design artifacts for
algorithms that you develop in
MATLAB code for reviews and
archiving

MATLAB® Report Generator™

“MATLAB Report Generator”
documentation

Produce design artifacts
from Simulink and Stateflow
models for reviews and
archiving

Simulink Report Generator

“Simulink Report Generator”
System Design Description
Report

rtwdemo_codegenrpt

Add one or more components
to another environment for
system simulation

Refine a component model

Refine an integrated system
model

Verify functionality of a model
in nonreal time

Test a concept model

“Real-Time System Rapid
Prototyping”

Schedule generated code “Scheduling”

“Handling Asynchronous
Events”

rtwdemos, select Multirate
Support folder

Specify function boundaries of
systems

“Subsystems”
rtwdemo_atomic
rtwdemo_ssreuse
rtwdemo_filepart
rtwdemo_export_functions

Specify components and
boundaries for design and
incremental code generation

“Model Architecture and
Design”

rtwdemo_mdlreftop

1-33

http://www.mathworks.com/products/ML_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/

1 Product Overview

Developing a Model Executable Specification (Continued)

Goals Related Product
Information

Demos

Specify function interfaces
so that external software can
compile, build, and invoke the
generated code

Embedded Coder

“Function Prototype Control”
and “C++ Encapsulation
Interface Control” in
the Embedded Coder
documentation

rtwdemo_fcnprotoctrl
rtwdemo_cppencap

Manage data packaging in
generated code for integrating
and packaging data

Embedded Coder

“Data, Function, and File
Definition” in the Embedded
Coder documentation

“Relocating Code to Another
Development Environment”
(PacknGo)

rtwdemos, select Function,
File and Data Packaging
folder

Generate and control the
format of comments and
identifiers in generated code

Embedded Coder

“Configuring Code Comments
in Embedded System Code”
and “Configuring Symbols”
in the Embedded Coder
documentation

rtwdemo_comments
rtwdemo_symbols

Create a zip file that contains
generated code files, static
files, and dependent data to
build generated code in an
environment other than your
host computer

“Relocating Code to Another
Development Environment”
(PacknGo)

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

Embedded Coder

“Shared Object Libraries”
in the Embedded Coder
documentation

rtwdemo_shrlib

1-34

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/

V-Model for System Development

Developing a Model Executable Specification (Continued)

Goals Related Product
Information

Demos

Refine component and
environment model designs by
rapidly iterating between
algorithm design and
prototyping

Verify whether a component
can adequately control a
physical system in non-real
time

Evaluate system performance
before laying out hardware,
coding production software, or
committing to a fixed design

Test hardware

“Real-Time System Rapid
Prototyping”

“Model Architecture and
Design” in the Simulink Coder
documentation

“Model Architecture and
Design” in the Embedded
Coder documentation

“Code Execution Profiling”

rtwdemo_profile

Generate code for rapid
prototyping

“Targets and Code Formats”

Embedded Coder

“Model Architecture and
Design” in the Embedded
Coder documentation

“Working with Wind River
VxWorks RTOS”

rtwdemo_counter
rtwdemo_async

Generate code for rapid
prototyping in hard real time,
using PCs

xPC Target

xPC Target documentation

doc xpcdemos

Generate code for rapid
prototyping in soft real time,
using PCs

Real-Time Windows Target™

Real-Time Windows Target
documentation

rtvdp (and others)

1-35

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/rtwt/

1 Product Overview

Developing a Detailed Software Design

Goals Related Product Information Demos

Refine a model design for
representation and storage of
data in generated code

“Data, Function, and File
Definition”

“Relocating Code to Another
Development Environment”
(PacknGo)

Select a deployment code
format

“Targets and Code Formats”

Embedded Coder

“Model Architecture and
Design” and “Generating
Code for AUTOSAR Software
Components” in the Embedded
Coder documentation

“Working with Wind River
VxWorks RTOS”

rtwdemo_counter
rtwdemo_async
rtwdemo_osek
“AUTOSAR Demos” in
the Embedded Coder
documentation

Specify target hardware
settings

“Target” rtwdemo_targetsettings

Design model variants “Modeling Variant Systems” in the
Simulink documentation

Specify fixed-point algorithms
in Simulink, Stateflow, and
the MATLAB language subset
for code generation

Simulink Fixed Point

“Data Types and Scaling” and
“Code Generation” in the Simulink
Fixed Point documentation

rtwdemo_fixpt1
rtwdemo_fuelsys_fxp_publish

Convert a floating-point model
or subsystem to a fixed-point
representation

Simulink Fixed Point

“Fixed-Point Advisor” in
the Simulink Fixed Point
documentation

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design, using
autoscaling

Simulink Fixed Point

“Automatic Data Typing” in
the Simulink Fixed Point
documentation

fxpdemo_feedback

1-36

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/

V-Model for System Development

Developing a Detailed Software Design (Continued)

Goals Related Product Information Demos

Create or rename data
types specifically for your
application

Embedded Coder

“Code Generation with
User-Defined Data Types” in the
Embedded Coder documentation

rtwdemo_udt

Control the format of
identifiers in generated
code

Embedded Coder

“Configuring Symbols” in the
Embedded Coder documentation

rtwdemo_symbols

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

Embedded Coder

“Custom Storage Classes” in the
Embedded Coder documentation

rtwdemo_cscpredef

Create a data dictionary for a
model

Embedded Coder

“Data Definition and Declaration
Management” in the Embedded
Coder documentation

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or safe data access

Embedded Coder

“Memory Sections” in the
Embedded Coder documentation

rtwdemo_memsec

Assess and adjust model
configuration parameters
based on the application
and an expected run-time
environment

“Code Generation” in the Simulink
Coder documentation

“Code Generation” in the
Embedded Coder documentation

rtwdemo_f14

Check a model against basic
modeling guidelines

“Consulting the Model Advisor” in
the Simulink documentation

rtwdemo_advisor1

1-37

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/

1 Product Overview

Developing a Detailed Software Design (Continued)

Goals Related Product Information Demos

Add custom checks to the
Simulink Model Advisor

Simulink Verification and
Validation

“Customizing the Model Advisor”
in the Simulink Verification and
Validation documentation

slvnvdemo_mdladv

Check a model against custom
standards or guidelines

“Consulting the Model Advisor” in
the Simulink documentation

Check a model against
industry standards and
guidelines (MathWorks
Automotive Advisory Board
(MAAB), IEC 61508, and
DO-178B)

Embedded Coder

“Guidelines and Standards” in the
Embedded Coder documentation

Simulink Verification and
Validation

“Model Advisor Checks” in
the Simulink Verification and
Validation documentation

rtwdemo_iec61508

Obtain model coverage for
structural coverage analysis
such as MC/DC

Simulink Verification and
Validation

“Model Coverage Analysis” in
the Simulink Verification and
Validation documentation

cvbasic_operation

Prove properties and generate
test vectors for models

Simulink® Design Verifier™

Simulink Design Verifier
documentation

sldvdemo_cruise_control
sldvdemo_cruise_control_-
verification

1-38

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/sldesignverifier/

V-Model for System Development

Developing a Detailed Software Design (Continued)

Goals Related Product Information Demos

Generate reports of models
and software designs

MATLAB Report Generator

MATLAB Report Generator
documentation

Simulink Report Generator

Simulink Report Generator
System Design Description Report
documentation

rtwdemo_codegenrpt

Conduct reviews of your
model and software designs
with coworkers, customers,
and suppliers who do not have
Simulink available

Simulink Report Generator

“Exporting Simulink Models to
Web Views” and “Comparing XML
Files Exported from Simulink
Models”in the Simulink Report
Generator documentation

slxml_sfcar

Refine the concept model of
your component or system

Test and validate the model
functionality in real time

Test the hardware

Obtain real-time profiles and
code metrics for analysis
and sizing based on your
embedded processor

Assess the feasibility
of the algorithm based
on integration with the
environment or plant
hardware

“Real-Time System Rapid
Prototyping” in the Embedded
Coder documentation

“Embedded IDEs and Embedded
TargetsDesktop IDEs and Desktop
Targets” topics in the Embedded
Coder documentation

“Embedded IDEs and Embedded
TargetsDesktop IDEs and Desktop
Targets” topics in the Simulink
Coder documentation

rtwdemos, select
Desktop IDEsDesktop
TargetsEmbedded
IDEsEmbedded Targets
folder

1-39

http://www.mathworks.com/products/ML_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/

1 Product Overview

Developing a Detailed Software Design (Continued)

Goals Related Product Information Demos

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“Targets and Code Formats”

Embedded Coder

“Model Architecture and
Design” and “Generating
Code for AUTOSAR Software
Components” in the Embedded
Coder documentation

“Working with Wind River
VxWorks RTOS”

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_cppencap
rtwdemo_async
rtwdemo_osek
“AUTOSAR Demos” in
the Embedded Coder
documentation

Integrate existing externally
written C or C++ code with
your model for simulation and
code generation

“Integrating Existing C Functions
into Simulink Models with the
Legacy Code Tool” in the Simulink
documentation

“S-Function Code Insertion ” in the
Simulink Coder documentation

“External Code Integration” in the
Embedded Coder documentation

rtwdemos, select
Integrating with C
Code or Integrating
with C++ Code folder

Generate code for on-target
rapid prototyping on specific
embedded microprocessors
and IDEs

“Real-Time System Rapid
Prototyping” in the Embedded
Coder documentation

“Embedded IDEs and Embedded
TargetsDesktop IDEs and Desktop
Targets” topics in the Embedded
Coder documentation

“Embedded IDEs and Embedded
TargetsDesktop IDEs and Desktop
Targets” topics in the Simulink
Coder documentation

In rtwdemos, select one
of the following folders:
Desktop IDEs, Desktop
Targets, Embedded
IDEs, or Embedded
Targets

1-40

http://www.mathworks.com/products/embedded-coder/

V-Model for System Development

Generating the Application Code

Goals Related Product
Information

Demos

Optimize generated ANSI®

C code for production (for
example, disable floating-point
code, remove termination
and error handling code, and
combine code entry points into
single functions)

“Performance”

Embedded Coder

“Performance” in the
Embedded Coder
documentation

rtwdemos, select
Optimizations folder

Optimize code for a specific
run-time environment, using
specialized function libraries

Embedded Coder

“Code Replacement” in
the Embedded Coder
documentation

rtwdemo_tfl_script

Control the format and style of
generated code

Embedded Coder

“Controlling Code Style”
in the Embedded Coder
documentation

rtwdemo_parentheses

Control the comments inserted
into generated code

Embedded Coder

“Configuring Code Comments
in Embedded System Code” in
the Embedded Coder

rtwdemo_comments

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing
Post-Code-Generation Build
Processing”

rtwdemo_buildinfo

Include requirements tags in
generated code

Simulink Verification and
Validation

“Requirements Information
in Generated Code” in the
Simulink Verification and
Validation documentation

rtwdemo_requirements

1-41

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

1 Product Overview

Generating the Application Code (Continued)

Goals Related Product
Information

Demos

Trace model blocks and
subsystems to generated code
and vice versa

Embedded Coder

“Report Generation”, “Tracing
Code to Model Objects
Using Hyperlinks”,“Tracing
Model Objects to Generated
Code”, and “Guidelines and
Standards” in the Embedded
Coder documentation

rtwdemo_comments
rtwdemo_hyperlinks

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

“S-Function Code Insertion
” in the Simulink Coder
documentation

“External Code Integration”
in the Embedded Coder
documentation

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code folder

Verify generated code for
MISRA C®3 and other run-time
violations

Embedded Coder

“Developing Models and Code
That Comply with MISRA C
Guidelines” in the Embedded
Coder documentation

Documentation for Polyspace®

Products

rtwdemo_polyspace

3. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

1-42

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

V-Model for System Development

Generating the Application Code (Continued)

Goals Related Product
Information

Demos

Protect the intellectual
property of component model
design and generated code

Generate a binary file (shared
library)

“Protecting Referenced
Models” in the Simulink
documentation

Shared Object Libraries
in the Embedded Coder
documentation

Generate a MEX-file
S-function for a model or
subsystem so that it can be
shared with a third-party
vendor

“Generated S-Function Block”

Generate a shared library
for a model or subsystem so
that it can be shared with a
third-party vendor

Shared Object Libraries
in the Embedded Coder
documentation

Test generated production
code with an environment
or plant model to verify a
successful conversion of the
model to code

Embedded Coder

“SIL and PIL Simulation”
in the Embedded Coder
documentation

rtwdemo_sil_pil_script

Write or generate an
S-function wrapper for
calling your generated source
code from a model running in
Simulink

“Writing Wrapper
S-Functions”

Embedded Coder

“Generating S-Function
Wrappers” in the Embedded
Coder documentation

rtwdemo_sil_pil_script

Set up and run SIL tests on
your host computer

Embedded Coder

“SIL and PIL Simulation”
in the Embedded Coder
documentation

rtwdemo_sil_pil_script

1-43

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/

1 Product Overview

Integrating and Verifying Software

Goals Related Product
Information

Demos

Integrate existing externally
written C or C++ code with a
model for simulation and code
generation

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

“S-Function Code Insertion
” in the Simulink Coder
documentation

“External Code Integration”
in the Embedded Coder
documentation

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code folder

Connect to data interfaces
for generated C code data
structures

“Customization” in
the Simulink Coder
documentation

“Deployment” in the
Embedded Coder
documentation

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated code

Embedded Coder

“Function Prototype Control”
and “C++ Encapsulation
Interface Control” in
the Embedded Coder
documentation

rtwdemo_fcnprotoctrl
rtwdemo_cppencap

Export virtual and
function-call subsystems

Embedded Coder

“Exporting Function-Call
Subsystems” in the Embedded
Coder documentation

rtwdemo_export_functions

1-44

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/

V-Model for System Development

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Demos

Include target-specific code Embedded Coder

“Code Replacement” in
the Embedded Coder
documentation

rtwdemo_tfl_script

Customize and control the
build process

“Program Building,
Interaction, and Debugging”

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data to
build the generated code in an
environment other than your
host computer

“Relocating Code to Another
Development Environment”
(PacknGo)

rtwdemo_buildinfo

Integrate all software
components as a complete
system for testing in the target
environment

“Component Verification”
in the Embedded Coder
documentation

Generate source code for
integration with specific
production environments

“Targets and Code Formats”

Embedded Coder

“Model Architecture and
Design” and “Generating
Code for AUTOSAR Software
Components” in the Embedded
Coder documentation

“Working with Wind River
VxWorks RTOS”

rtwdemo_async
rtwdemo_osek
“AUTOSAR Demos” in
the Embedded Coder
documentation

Integrate code for a specific
run-time environment, using
specialized function libraries

Embedded Coder

“Code Replacement” in
the Embedded Coder
documentation

rtwdemo_tfl_script

1-45

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/

1 Product Overview

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Demos

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing
Post-Code-Generation Build
Processing”

rtwdemo_buildinfo

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

“S-Function Code Insertion
” in the Simulink Coder
documentation

“External Code Integration”
in the Embedded Coder
documentation

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code folder

Connect to data interfaces
for the generated C code data
structures

“Customization” in
the Simulink Coder
documentation

“Deployment” in the
Embedded Coder
documentation

rtwdemo_capi
rtwdemo_asap2

Customize and control the
build process

“Program Building,
Interaction, and Debugging”

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment”
(PacknGo)

rtwdemo_buildinfo

Schedule the generated code “Scheduling” rtwdemos, select Multirate
Support folder

1-46

V-Model for System Development

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Demos

Verify object code files in a
target environment

“SIL and PIL Simulation”
in the Embedded Coder
documentation

rtwdemo_sil_pil_script

Set up and run PIL tests on
your target system

“SIL and PIL Simulation”
in the Embedded Coder
documentation

“Embedded IDEs and
Embedded TargetsDesktop
IDEs and Desktop Targets”
topics in the Embedded Coder
documentation

rtwdemo_sil_pil_script
rtwdemo_custom_pil
rtwdemo_rtiostream
See the list of supported
hardware for the Embedded
Coder product on the
MathWorks Web site, and
then find a demo for the
related product of interest

1-47

http://www.mathworks.com/products/embedded-coder/supportedio.html
http://www.mathworks.com/products/embedded-coder/supportedio.html

1 Product Overview

Integrating, Verifying, and Calibrating System Components

Goals Related Product
Information

Demos

Integrate the software and
its microprocessor with the
hardware environment for
the final embedded system
product

Add the complexity of the
environment (or plant) under
control to the test platform

Test and verify the embedded
system or control unit by using
a real-time target environment

“Hardware-In-the-Loop (HIL)
Simulation”

Generate source code for HIL
testing

“Targets and Code Formats”

Embedded Coder

“Model Architecture and
Design” and “Generating
Code for AUTOSAR Software
Components” in the Embedded
Coder documentation

“Working with Wind River
VxWorks RTOS”

rtwdemo_f14

Conduct hard real-time HIL
testing using PCs

xPC Target

xPC Target documentation

doc xpcdemos

Tune ECU properly for its
intended use

“Customization” in
the Simulink Coder
documentation

“Deployment” in the
Embedded Coder
documentation

1-48

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/xpctarget/

V-Model for System Development

Integrating, Verifying, and Calibrating System Components (Continued)

Goals Related Product
Information

Demos

Generate ASAP2 data files “ASAP2 Data Measurement
and Calibration”

rtwdemo_asap2

Generate C API data interface
files

“Data Interchange Using the
C API”

rtwdemo_capi

1-49

1 Product Overview

1-50

2

Getting Started Examples

• “About the Examples” on page 2-2

• “Getting Familiar with the Example Model and Testing Environment”
on page 2-4

• “Configuring the Model and Generating Code” on page 2-18

• “Configuring the Data Interface” on page 2-26

• “Calling External C Functions from a Model and Generated Code” on page
2-37

2 Getting Started Examples

About the Examples

In this section...

“Introduction” on page 2-2

“Prerequisites” on page 2-2

“Required Files” on page 2-3

Introduction
The following examples will help you get started with using Simulink Coder
to generate code from Simulink models and subsystems:

• “Getting Familiar with the Example Model and Testing Environment”
on page 2-4

• “Configuring the Model and Generating Code” on page 2-18

• “Configuring the Data Interface” on page 2-26

• “Calling External C Functions from a Model and Generated Code” on page
2-37

Each example focuses on a specific aspect of code generation or integration
and is self-contained. Skim or skip examples that do not apply to your needs.

If you are licensed to use the Embedded Coder product, additional examples,
based on the same models and test harness, are available.

Prerequisites
For these examples, you must know how to use MathWorks products to do
the following:

• Create Simulink models

• Include Stateflow charts in Simulink models

• Run Simulink simulations and evaluate the results

2-2

About the Examples

Required Files
Each example uses a unique example model file and data set.

• Before you use each example model file, place a copy in a writable location
and add it to your MATLAB path.

• As you proceed through a example, save your changes for future
examination.

• To avoid potentially introducing errors, begin each example by opening a
new model and loading new data.

2-3

2 Getting Started Examples

Getting Familiar with the Example Model and Testing
Environment

In this section...

“About This Example” on page 2-4

“Understanding the Functional Design of the Model” on page 2-5

“Viewing the Top Model” on page 2-5

“Viewing the Subsystems” on page 2-6

“Understanding the Simulation Testing Environment” on page 2-8

“Checking the Model for Adverse Conditions and Simulation Settings” on
page 2-13

“Running Simulation Tests” on page 2-14

“Key Points” on page 2-16

“Learn More” on page 2-16

About This Example

Learning Objectives

• Understand the functional behavior of the example model.

• Understand the role of the example test harness and its components.

• Apply model checking tools to discover conditions and configuration
settings resulting in inaccurate or inefficient simulation.

• Run simulation tests on a model.

Prerequisites

• Ability to open and modify Simulink models and subsystems.

• Understand subsystems and how to view subsystem details.

• Understand referenced models and how to view referenced model details.

2-4

Getting Familiar with the Example Model and Testing Environment

• Ability to set model configuration parameters.

• Ability to use the Simulink Model Advisor.

Required Files
Before you use each example model file, place a copy in a writable location
and add it to your MATLAB path.

• rtwdemo_throttlecntrl.mdl

• rtwdemo_throttlecntrl_testharness.mdl

Understanding the Functional Design of the Model
This example uses a simple, but functionally complete, example model of a
throttle controller. The model features redundant control algorithms. The
model highlights a standard model structure and a set of basic blocks in
algorithm design.

Viewing the Top Model
Open rtwdemo_throttlecntrl.mdl and save a copy as throttlecntrl.mdl
in a writable location on your MATLAB path.

The top level of the model consists of the following elements:

2-5

2 Getting Started Examples

Subsystems PI_ctrl_1
PI_ctrl_2
Define_Throt_Param
Pos_Command_Arbitration

Top-level input pos_rqst
fbk_1
fbk_2

Top-level output pos_cmd_one
pos_cmd_two
ThrotComm1

Signal routing

No blocks that change the value of a
signal, such as Sum and Integrator

The layout uses a basic architectural style for models:

• Separation of calculations from signal routing (lines and buses)

• Partitioning into subsystems

You can apply this style to all types of models.

Viewing the Subsystems
Explore two of the subsystems in the top model.

1 If not already open, open throttlecntrl.mdl.

Two subsystems in the top model represent proportional-integral (PI)
controllers, PI_ctrl_1 and PI_ctrl_2. At this stage, these identical
subsystems, use identical data. If you have an Embedded Coder license,
you can use these subsystems in a example that shows how to create
reusable functions.

2 Open the PI_ctrl_1 subsystem.

2-6

Getting Familiar with the Example Model and Testing Environment

The PI controllers in the model are from a library, a group of related blocks
or models for reuse. Libraries provide one of two methods for including and
reusing models. The second method, model referencing, is described in
“Understanding the Simulation Testing Environment” on page 2-8. You
cannot edit a block that you add to a model from a library. You must edit
the block in the library so that instances of the block in different models
remain consistent.

3 Open the Pos_Command_Arbitration subsystem. This Stateflow chart
performs basic error checking on the two command signals. If the command
signals are too far apart, the Stateflow diagram sets the output to a
fail_safe position.

2-7

2 Getting Started Examples

4 Close throttlecntrl.mdl.

Understanding the Simulation Testing Environment
To test the throttle controller algorithm, you incorporate it into a test harness.
A test harness is a model that evaluates the control algorithm and offers
the following benefits:

• Separates test data from the control algorithm.

• Separates the plant or feedback model from the control algorithm.

• Provides a reusable environment for multiple versions of the control
algorithm.

The test harness model for this example implements a common simulation
testing environment consisting of the following parts:

• Unit under test

• Test vector source

• Evaluation and logging

2-8

Getting Familiar with the Example Model and Testing Environment

• Plant or feedback system

• Input and output scaling

Explore the simulation testing environment.

1 Open the test harness model rtwdemo_throttlecntrl_testharness.mdl
and save a copy as throttlecntrl_testharness.mdl in a writable location
on your MATLAB path.

2 Set up your throttlecntrl model as the control algorithm of the test
harness.

a Open the Unit_Under_Test block and view the control algorithm.

b View the model reference parameters by right-clicking the
Unit_Under_Test block and selectingModel Reference Parameters.

2-9

2 Getting Started Examples

rtwdemo_PCG_Eval_P1 appears as the name of the referenced model.

c Change the value of Model name to throttlecntrl.

d Update the test harness model diagram by clicking Edit > Update
Diagram.

The control algorithm is the unit under test, as indicated by the name of
the Model block, Unit_Under_Test.

The Model block provides a method for reusing components. From the top
model, it allows you to reference other models (directly or indirectly) as
compiled functions. By default, Simulink software recompiles the model
when the referenced models change. Compiled functions have the following
advantages over libraries:

• Simulation time is faster for large models.

• You can directly simulate compiled functions.

• Simulation requires less memory. Only one copy of the compiled model
is in memory, even when the model is referenced multiple times.

2-10

Getting Familiar with the Example Model and Testing Environment

3 Open the test vector source, implemented in this test harness as the
Test_Vectors subsystem.

The subsystem uses a Signal Builder block for the test vector source. The
block has data that drives the simulation (PosRequest) and provides the
expected results used by the Verification subsystem. This example test
harness uses only one set of test data. Typically, you create a test suite that
fully exercises the system.

4 Open the evaluation and logging subsystem, implemented in this test
harness as subsystem Verification.

A test harness compares control algorithm simulation results against
golden data— test results that exhibit the desired behavior for the control
algorithm as certified by an expert. In the Verification subsystem, an
Assertion block compares the simulated throttle value position from the
plant against the golden value from the test harness. If the difference
between the two signals is greater than 5%, the test fails and the Assertion
block stops the simulation.

Alternatively, you can evaluate the simulation data after the simulation
completes execution. You can use either MATLAB scripts or third-party

2-11

2 Getting Started Examples

tools to perform the evaluation. Post-execution evaluation provides greater
flexibility in the analysis of data. However, it requires waiting until
execution is complete. Combining the two methods can provide a highly
flexible and efficient test environment.

5 Open the plant or feedback system, implemented in this test harness as
the Plant subsystem.

The Plant subsystem models the throttle dynamics with a transfer function
in canonical form. You can create plant models to any level of fidelity. It is
common to use different plant models at different stages of testing.

6 Open the input and output scaling subsystems, implemented in this test
harness as Input_Signal_Scaling and Output_Signal_Scaling.

2-12

Getting Familiar with the Example Model and Testing Environment

The subsystems that scale input and output perform the following primary
functions:

• Select input signals to route to the unit under test and output signals
to route to the plant.

• Rescale signals between engineering units and units that are writable
for the unit under test.

• Handle rate transitions between the plant and the unit under test.

7 Save and close throttlecntrl_testharness.mdl..

Checking the Model for Adverse Conditions and
Simulation Settings
Before simulating a model and running simulation tests, use the Simulink
Model Advisor to check the model for conditions and configuration settings
resulting in inaccurate simulation of the system that the model represents.

1 Open your copy of the throttle controller model, throttlecntrl.mdl.

2 Start the Model Advisor by selecting Tools > Model Advisor. A dialog
box opens showing the model system hierarchy.

3 Click throttlecntrl and then click OK. The Model Advisor window opens.

4 Expand By Product and Simulink. By default, all checks that do not
trigger an Update Diagram are selected.

5 In the left pane, enable the unselected checks and select Simulink.

6 In the right pane, select Show report after run and click Run Selected
Checks. The report shows a Run Summary that flags seven warnings.

2-13

2 Getting Started Examples

7 Follow the report instructions to correct the warning conditions and rerun
the checks.

Running Simulation Tests

1 In the MATLAB Command Window, enter mex -setup to set up your C
compiler. Specify a valid, installed compiler.

2 Check that your working folder is set to a writable folder, such as the folder
into which you placed copies of the example model files.

3 Open your copy of the test harness model, throttlecntrl_testharness.

4 Start a test harness model simulation.

The first time that the test harness runs, the code generation software
compiles the referenced model. You can monitor the compilation progress
in the MATLAB Command Window.

During the compilation, an error dialog box appears reporting the following
error:

Model 'throttlecntrl' is referenced in Normal Mode and does
not have 'Inline parameters' enabled. Go to the Optimization >
Signals and Parameters pane of the Configuration Parameters
dialog for model 'throttlecntrl' and enable 'Inline parameters'

5 Enable inline parameters for the throttle control model, as instructed in
the error message.

a Open throttlecntrl.mdl.

b Select Simulation > Configuration
Parameters > Optimization > Signals and Parameters > Inline
parameters.

2-14

Getting Familiar with the Example Model and Testing Environment

c Click OK to save the change and close the dialog box.

6 Restart the simulation. When the simulation is complete, Simulink
software displays the results.

The lower-right hand plot shows the difference between the expected
(golden) throttle position and the throttle position that the plant calculates.
If the difference between the two values is greater than ±0.05, the
simulation stops.

7 Save and close throttle controller and test harness models.

2-15

2 Getting Started Examples

Key Points

• A basic model architecture separates calculations from signal routing and
partitions the model into subsystems

• Two options for model reuse include block libraries and model referencing.

• If you represent your control algorithm in a test harness as a Model block,
be sure that you specify the name of the control algorithm model correctly
in the Model Reference Parameters dialog box.

• A test harness is a model that evaluates a control algorithm and typically
consists of a unit under test, a test vector source, evaluation and logging, a
plant or feedback system, and input and output scaling components.

• The unit under test is the control algorithm being tested.

• The test vector source provides the data that drives the simulation which
generates results used for verification.

• During verification, the test harness compares control algorithm simulation
results against golden data and logs the results.

• The plant or feedback component of a test harness models the environment
that is being controlled.

• When developing a test harness,

- Scale input and output components.

- Select input signals to route to the unit under test.

- Select output signals to route to the plant.

- Rescale signals between engineering units and units that are writable
for the unit under test.

- Handle rate transitions between the plant and the unit under test.

• Before running simulation or completing verification, consider checking a
model with the Model Advisor.

Learn More

• “Supporting Model Referencing” in the Simulink Coder documentation

2-16

Getting Familiar with the Example Model and Testing Environment

• “Program Building, Interaction, and Debugging” in the Simulink Coder
documentation

• “Configuration Parameters” in the Embedded Coder documentation

• “Working with Signal Groups” in the Simulink documentation

2-17

2 Getting Started Examples

Configuring the Model and Generating Code

In this section...

“About This Example” on page 2-18

“Configuring the Model for Code Generation” on page 2-19

“Saving Your Model Configuration as a MATLAB Function” on page 2-20

“Checking the Model for Adverse Conditions and Code Generation Settings”
on page 2-21

“Generating Code for the Model” on page 2-22

“Reviewing the Generated Code” on page 2-22

“Generating an Executable” on page 2-24

“Key Points” on page 2-24

“Learn More” on page 2-25

About This Example

Learning Objectives

• Configure a model for code generation.

• Apply model checking tools to discover conditions and configuration
settings resulting in generation of inaccurate or inefficient code.

• Generate code from a model.

• Locate and identify generated code files.

• Review generated code.

Prerequisites

• Ability to open and modify Simulink models and subsystems.

• Ability to set model configuration parameters.

• Ability to use the Simulink Model Advisor.

2-18

Configuring the Model and Generating Code

• Ability to read C code.

• Set up a C compiler. In the MATLAB Command Window, enter mex
-setup and specify a valid, installed compiler.

Required Files
rtwdemo_throttlecntrl.mdl

Configuring the Model for Code Generation
Model configuration parameters determine the method for generating the
code and the resulting format.

1 Open rtwdemo_throttlecntrl.mdl and save a copy as throttlecntrl.mdl
in a writable location on your MATLAB path.

2 Open the Configuration Parameters dialog box Solver pane. To generate
code for a model, you must configure the model to use a fixed-step solver.
For this example, set the parameters as noted in the following table.

Parameter Setting Effect on Generated
Code

Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code
generation

Solver discrete (no
continuous states)

Applies a fixed-step
integration technique
for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate;
must be the lowest
common multiple of all
rates in the system

2-19

2 Getting Started Examples

3 Open the Code Generation > General pane and make sure that System
target file is set to grt.tlc.

Note The GRT (Generic Real-Time Target) configuration requires a
fixed-step solver. However, the rsim.tlc system target file supports
variable step code generation.

The system target file (STF) defines a target, which is an environment
for generating and building code for execution on a certain hardware or
operating system platform. For example, one property of a target is code
format. The grt configuration requires a fixed step solver and the rsim.tlc
supports variable step code generation.

4 Open the Code Generation > Custom Code pane, and under Include
list of additional, select Include directories. In the Include
directories text field, enter:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This directory includes files that are required to build an executable for
the model.

5 Apply your changes and close the dialog box.

Saving Your Model Configuration as a MATLAB
Function
You can save the settings of model configuration parameters as a MATLAB
function by using the getActiveConfigSet function. In the MATLAB
Command Window, enter:

thcntrlAcs = getActiveConfigSet('throttlecntrl');
thcntrlAcs.saveAs('throttlecntrlModelConfig');

2-20

Configuring the Model and Generating Code

You can then use the resulting function (for example,
throttlecntrlModelConfig) to:

• Archive the model configuration.

• Compare different model configurations by using differencing tools.

• Set the configuration of other models.

For example, you can set the configuration of model myModel to match
the configuration of the throttle controller model by opening myModel and
entering:

myModelAcs = throttlecntrlModelConfig;
attachConfigSet('myModel', myModelAcs, true);
setActiveConfigSet('myModel', myModelAcs.Name);

For more information, see “Save a Configuration Set” and “Load a Saved
Configuration Set” in the Simulink documentation.

Checking the Model for Adverse Conditions and Code
Generation Settings
Before generating code for a model, use the Simulink Model Advisor to
check the model for conditions and configuration settings that can result in
inaccurate or inefficient code.

1 Open throttlecntrl.mdl.

2 Start the Model Advisor by selecting Tools > Model Advisor. A dialog
box opens showing the model system hierarchy.

3 Click throttlecntrl and then click OK. The Model Advisor window opens.

4 Expand By Product and Embedded Coder. By default, all checks that
do not trigger an Update Diagram, with one exception, are selected.

5 In the left pane, select the remaining checks and select Embedded Coder.

6 In the right pane, select Show report after run and click Run Selected
Checks. The report shows a Run Summary that flags three warnings.

2-21

2 Getting Started Examples

7 Review the report. The warnings highlight issues for embedded systems.
At this point, you can ignore them.

Generating Code for the Model

1 Open throttlecntrl.mdl.

2 In the Configuration Parameters dialog box, select Code
Generation > Generate code only.

3 On the Code Generation > Report pane, select Create code generation
report.

4 Click Apply.

5 Return to the Code Generation pane, click the Generate code button,
and watch the messages that appear in the MATLAB Command Window.
The code generator produces standard C and header files, and an HTML
code generation report. The code generator places the files in a build
folder, a subfolder named throttlecntrl_grt_rtw under your current
working folder.

Reviewing the Generated Code

1 Open Model Explorer, and in theModel Hierarchy pane, expand the node
for the throttlecntrl model, and select the Code for node.

2 In the Contents pane, select HTML Report. Model Explorer displays the
HTML code generation report for the throttle controller model.

3 In the HTML report, click the link for the generated C model file and
review the generated code. Note the following:

• Identification, version, timestamp, and configuration comments.

• Links to help you navigate within and between files

2-22

Configuring the Model and Generating Code

• Data definitions

• Scheduler code

• Controller code

• Model initialization and termination functions

• Call interface for the GRT target — output, update, initialization, start,
and terminate

4 Save and close throttlecntrl.mdl.

Consider examining the following files. In the HTML report Contents
pane, click the links. Or, in your working folder, explore the generated code
subfolder.

File Description

throttlecntrl.c C file that contains the scheduler,
controller, initialization, and
interface code

throttlecntrl_data.c C file that assigns values to
generated data structures

throttlecntrl.h Header file that defines data
structures

throttlecntrl_private.h Header file that defines data used
only by the generated code

throttlecntrl_types.h Header file that defines the model
data structure

For more information, see “Generated Source Files and File Dependencies”.

At this point you might also want to consider logging data to a MAT-file. For
an example, see “Logging Data for Analysis”.

2-23

2 Getting Started Examples

Generating an Executable

1 If you have not already done so, set up your C compiler. In the MATLAB
Command Window, enter mex -setup and specify a valid, installed
compiler.

2 Open throttlecntrl.mdl.

3 In the Configuration Parameters dialog box, clear the Code
Generation > Generate code only check box.

4 Click the Build button. Watch the messages in the MATLAB Command
Window. The code generator uses a template make file associated with
your target selection to create an executable that you can run on your
workstation, independent of external timing and events.

5 Check the contents of the build folder. Find the file throttlecntrl.exe
file for your model.

6 Run the executable. In the Command Window, enter !throttlecntrl. The
! character passes the command that follows it to the operating system,
which runs the standalone program.

The program produces one line of output in the Command Window:

** starting the model **

At this point you might also want to consider logging data to a MAT-file.
For an example, see “Logging Data for Analysis”.

Key Points

• To generate code change the model configuration to specify a fixed-step
solver and then select a system target format. Using the grt.tlc file
requires a fixed-step solver. If the model contains continuous time blocks
then a variable-step solver can be used with the rsim.tlc target.

• After debugging a model, consider configuring a model with parameter
inlining enabled.

• Use the getActiveConfigSet function to save a model configuration for
future use or to apply it to another model.

2-24

Configuring the Model and Generating Code

• Before generating code, consider checking a model with the Model Advisor.

• The code generator places generated files in a subfolder (model_grt_rtw) of
your working folder.

Learn More

• “Code Generation”

• “Save a Configuration Set” and “Load a Saved Configuration Set” in the
Simulink documentation.

• “Consulting the Model Advisor” in the Simulink documentation.

•

2-25

2 Getting Started Examples

Configuring the Data Interface

In this section...

“About This Example” on page 2-26

“Declaring Data” on page 2-27

“Using Data Objects” on page 2-28

“Adding New Data Objects” on page 2-31

“Enabling Data Objects for Generated Code” on page 2-32

“Effects of Simulation on Data Typing” on page 2-33

“Managing Data” on page 2-34

“Key Points” on page 2-35

“Learn More” on page 2-35

About This Example

Learning Objectives

• Configure the data interface for code generated for a model.

• Control the name, data type, and data storage class of signals and
parameters in generated code.

Prerequisites

• Understanding ways to represent and use data and signals in models.

• Familiarity with representing data constructs as data objects.

• Ability to read C code.

Required File
rtwdemo_throttlecntrl_datainterface.mdl

2-26

Configuring the Data Interface

Declaring Data
Most programming languages require that you declare data before using it.
The declaration specifies the following information:

Data
Attribute

Description

Scope The region of the program that has access to the data

Duration The period during which the data is resident in memory

Data type The amount of memory allocated for the data

Initialization An initial value, a pointer to memory, or NULL (if you do
not provide an initial value, most compilers assign a zero
value or a null pointer)

The following data types are supported for code generation.

Supported Data Types

Name Description

double Double-precision floating point

single Single-precision floating point

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

Fixed point data types 8-, 16-, 32-bit word lengths

A storage class is the scope and duration of a data item. For more information
about storage classes, see

• “Tunable Parameter Storage Classes”

2-27

2 Getting Started Examples

• “Signals Storage Classes”

• “State Storage Classes”

Using Data Objects
In Simulink models and Stateflow charts, the following methods are available
for declaring data: data objects and direct specification. This example uses
the data object method. Both methods allow full control over the data type
and storage class. You can mix the two methods in a single model.

In the MATLAB and Simulink environment, you can use data objects in a
variety of ways. This example focuses on the following types of data objects:

• Signal

• Parameter

• Bus

To configure the data interface for your model using the data object method,
in the MATLAB base workspace, you define data objects and then associate
them with your Simulink model or embedded Stateflow chart. When you
build your model, the build process uses the associated base workspace data
objects in the generated code.

A data object has a mixture of active and descriptive fields. Active fields affect
simulation or code generation. Descriptive fields do not affect simulation or
code generation. They are used with data dictionaries and model-checking
tools.

• Active fields:

- Data type

- Storage class

- Value (parameters)

- Initial value (signals)

- Alias (define a different name in the generated code)

- Dimension (inherited for parameters)

2-28

Configuring the Data Interface

- Complexity (inherited for parameters)

• Descriptive fields:

- Minimum

- Maximum

- Units

- Description

You can create and inspect base workspace data objects by entering commands
in the MATLAB Command Window or by using Model Explorer. Perform the
following steps to explore base workspace signal data objects.

1 Open rtwdemo_throttlecntrl_datainterface.mdl and save a copy
as throttlecntrl_datainterface.mdl in a writable location on your
MATLAB path.

2 Open Model Explorer.

3 Select Base Workspace.

4 Select the pos_cmd_one signal object for viewing.

2-29

2 Getting Started Examples

You can also view the definition of a signal object. In the MATLAB
Command Window, enter pos_cmd_one:

pos_cmd_one =

Simulink.Signal (handle)

RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: [1x54 char]

DataType: 'double'

Min: -1

Max: 1

DocUnits: 'Norm'

Dimensions: -1

DimensionsMode: 'auto'

Complexity: 'auto'

SampleTime: -1

SamplingMode: 'auto'

InitialValue: '0'

2-30

Configuring the Data Interface

5 To view other signal objects, in Model Explorer, click the object name or
in the MATLAB Command Window, enter the object name. The following
table summarizes object characteristics for some of the data objects in
this model.

Object
Characteristics

pos_cmd_one pos_rqst P_InErrMap ThrotComm* ThrottleCommands*

Description Top-level
output

Top-level
input

Calibration
parameter

Top-level
output
structure

Bus definition

Data type Double Double Auto Auto Structure

Storage class Exported
global

Imported
extern
pointer

Constant Exported
global

None

* ThrottleCommands defines a Bus object; ThrotComm is an instantiation of
the bus. If the bus is a nonvirtual bus, the signal generates a structure in
the C code.

You can use a bus definition (ThrottleCommands) to instantiate multiple
instances of the structure. In a model diagram, a bus object appears as a wide
line with central dashes, as shown below.

Adding New Data Objects
You can create data objects for named signals, states, and parameters. To
associate a data object with a construct, the construct must have a name.

To find constructs for which you can create data objects, use the Data Object
Wizard. This tool finds the constructs and then creates the objects for you.

2-31

2 Getting Started Examples

The model includes two signals that are not associated with data objects:
fbk_1 and pos_cmd_two.

To find the signals and create data objects for them:

1 In the model window, select Tools > Data Object Wizard. The Data
Object Wizard dialog box opens.

2 To find candidate constructs, click Find. Constructs fbk_1 and
pos_cmd_two appear in the dialog box.

3 To select both constructs, click Check All.

4 To apply the default Simulink package for the data objects, click Apply
Package.

5 To create the data objects, click Create. Constructs fbk_1 and
pos_cmd_two are removed from the dialog box.

6 Close the Data Object Wizard.

7 In the Contents pane of the Model Explorer, find the newly created objects
fbk_1 and pos_cmd_two.

Enabling Data Objects for Generated Code

1 In the Model Explorer Model Hierarchy, expand the
throttlecntrl_datainterface model node.

2 Click the Configuration (Active) node. Make sure that you select,
Optimization > Signals and Parameters > Inline parameters.

3 Enable a signal to appear in generated code.

a In the model window, right-click the pos_cmd_one signal line and select
Signal Properties. A Signal Properties dialog box opens.

b Make sure that you select the Signal name must resolve to Simulink
signal object parameter.

2-32

Configuring the Data Interface

4 Enable signal object resolution for all signals in the model simultaneously.
In the MATLAB Command Window, enter:

disableimplicitsignalresolution('throttlecntrl_datainterface')

5 Save and close throttlecntrl_datainterface.mdl.

Effects of Simulation on Data Typing
In the throttle controller model, all data types are set to double. Because
Simulink software uses the double data type for simulation, do not expect
changes in the model behavior when you run the generated code. You verify
this by running the test harness.

Before you run your test harness, update it to include the
throttlecntrl_datainterface model.

Note The following procedure requires a Stateflow license.

1 Open throttlecntrl_datainterface.mdl.

2 Open your copy of test harness,throttlecntrl_testharness.mdl.

3 Right-click the Unit_Under_TestModel block and selectModel Reference
Parameters.

4 Set Model name (without the .mdl extension) to
throttlecntrl_datainterface. Click OK.

5 Update the test harness model diagram.

6 Simulate the test harness.

2-33

2 Getting Started Examples

The resulting plot shows that the difference between the golden and
simulated versions of the model remains zero.

7 Save and close throttlecntrl_testharness.mdl.

Managing Data
Data objects exist in a separate file from the model in the base workspace. To
save the data manually, in the MATLAB Command Window, enter save.

The separation of data from the model provides the following benefits:

2-34

Configuring the Data Interface

• One model, multiple data sets:

- Use of different parameter values to change the behavior of the
control algorithm (for example, for reusable components with different
calibration values)

- Use of different data types to change targeted hardware (for example, for
floating-point and fixed-point targets)

• Multiple models, one data set:

- Sharing data between models in a system

- Sharing data between projects (for example, transmission, engine, and
wheel controllers might all use the same CAN message data set)

Key Points

• You can declare data in Simulink models and Stateflow charts by using
data objects or direct specification.

• From the Model Explorer or from the command line in the MATLAB
Command Window, you manage (create, view, configure, and so on) base
workspace data.

• The Data Object Wizard provides a quick way to create data objects for
constructs such as signals, buses, and parameters.

• You must explicitly configure data objects to appear by name in generated
code.

• Because Simulink software uses the double data type for simulation, if all
data types are set to double for a model, expect simulation and generated
code behavior to match.

• Separation of data from model provides several benefits.

Learn More

• “Working with Data” in the Simulink documentation

• “Data, Function, and File Definition”

• “Custom Storage Classes” in the Embedded Coder documentation

2-35

2 Getting Started Examples

• “Managing Placement of Data Definitions and Declarations” in the
Embedded Coder documentation

2-36

Calling External C Functions from a Model and Generated Code

Calling External C Functions from a Model and Generated
Code

In this section...

“About This Example” on page 2-37

“Including External C Functions in a Model” on page 2-38

“Creating a Block That Calls a C Function” on page 2-38

“Validating External Code in the Simulink Environment” on page 2-40

“Validating C Code as Part of a Model” on page 2-42

“Calling a C Function from Generated Code” on page 2-44

“Key Points” on page 2-44

“Learn More” on page 2-45

About This Example

Learning Objectives

• Evaluate a C function as part of a model simulation.

• Call an external C function from generated code.

Prerequisites

• Ability to open and modify Simulink models and subsystems.

• Ability to set model configuration parameters.

• Ability to read C code.

• Set up a C compiler. In the MATLAB Command Window, enter mex
-setup and specifying a valid, installed compiler.

Required Files

• rtwdemo_throttlecntrl_extfunccall.mdl

2-37

2 Getting Started Examples

• rtwdemo_ValidateLegacyCodeVrsSim.mdl

• /toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files/SimpleTable.c

• /toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files/SimpleTable.h

Including External C Functions in a Model
Simulink models are one part of Model-Based Design. For many applications,
a design also includes a set of preexisting C functions created, tested
(verified), and validated outside of a MATLAB and Simulink environment.
You can integrate these functions easily into a model and the generated code.
External C code can be used in the generated code to access hardware devices
and external data files during rapid simulation runs.

This example shows you how to create a custom block that calls an external C
function. Once the block is part of the model, you can take advantage of the
simulation environment to test the system further.

Creating a Block That Calls a C Function
To specify a call to an external C function, use an S-Function block. You can
automate the process of creating the S-Function block by using the Simulink
Legacy Code Tool. Using this tool, you specify an interface for your external
C function. The tool then uses that interface to automate creation of an
S-Function block.

1 Make copies of the files SimpleTable.c and SimpleTable.h, located in
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files.
Put the copies in your working folder.

Note matlabroot represents the name of your top-level MATLAB
installation folder.

2 Create an S-Function block that calls the specified function at each time
step during simulation:

a In the MATLAB Command Window, create a function interface
definition structure:

2-38

Calling External C Functions from a Model and Generated Code

def=legacy_code('initialize')

The data structure def defines the function interface to the external
C code.

def =

SFunctionName: ''
InitializeConditionsFcnSpec: ''

OutputFcnSpec: ''
StartFcnSpec: ''

TerminateFcnSpec: ''
HeaderFiles: {}
SourceFiles: {}

HostLibFiles: {}
TargetLibFiles: {}

IncPaths: {}
SrcPaths: {}
LibPaths: {}

SampleTime: 'inherited'
Options: [1x1 struct]

b Populate the function interface definition structure by entering the
following commands:

def.OutputFcnSpec=['double y1 = SimpleTable(double u1,',...
'double p1[], double p2[], int16 p3)'];

def.HeaderFiles = {'SimpleTable.h'};
def.SourceFiles = {'SimpleTable.c'};
def.SFunctionName = 'SimpTableWrap';

c Create the S-function:

legacy_code('sfcn_cmex_generate', def)

d Compile the S-function:

legacy_code('compile', def)

e Create the S-Function block:

legacy_code('slblock_generate', def)

2-39

2 Getting Started Examples

A new model window opens that contains the SimpTableWrap block.

Tip Creating the S-Function block is a one-time task. Once the block
exists, you can reuse it in any model.

3 Save the model to your working folder as: s_func_simptablewrap.mdl.

4 Create a Target Language Compiler (TLC) file for the S-Function block:

legacy_code('sfcn_tlc_generate', def)

The TLC file is the component of an S-function that specifies how the code
generator produces the code for a block.

For more information on using the Legacy Code Tool, see:

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Simulink documentation

• “Legacy Code Tool Code Insertion”

Validating External Code in the Simulink Environment
When you integrate external C code with a Simulink model, before using the
code, always validate the functionality of the external C function code as a
standalone component .

1 Open the model rtwdemo_ValidateLegacyCodeVrsSim.mdl. This model
validates the S-function block that you just created.

2-40

Calling External C Functions from a Model and Generated Code

• The Sine Wave block produces output values from [-2 : 2].

• The input range of the lookup table is from [-1 : 1].

• The output from the lookup table is the absolute value of the input.

• The lookup table output clips the output at the input limits.

2 Simulate the model.

3 View the validation results by opening the Validation subsystem and, in
that subsystem, clicking the Scope block.

The following figure shows the validation results. The external C code and
the Simulink Lookup table block provide the same output values.

2-41

2 Getting Started Examples

4 Close the validation model.

Validating C Code as Part of a Model
After you validate the functionality of the external C function code as a
standalone component, validate the S-function in the model. Use the test
harness model to complete the validation.

Note The following procedure requires a Stateflow license.

1 Open rtwdemo_throttlecntrl_extfunccall.mdl and save a copy as
throttlecntrl_extfunccall.mdl in a writable folder on your MATLAB
path.

2 Examine the PI_ctrl_1 and PI_ctrl_2 subsystems.

a Lookup blocks have been replaced with the block you created using the
Legacy Code Tool.

2-42

Calling External C Functions from a Model and Generated Code

b Note the block parameter settings for SimpTableWrap and
SimpTableWrap1.

c Close the Block Parameter dialog boxes and the PI subsystem windows.

3 Open the test harness model, right-click the Unit_Under_TestModel block,
and select Model Reference Parameters.

4 Set Model name (without the .mdl extension) to
throttlecntrl_extfunccall. Click OK.

5 Update the test harness model diagram.

6 Simulate the test harness.

The simulation results match the expected golden values.

2-43

2 Getting Started Examples

7 Save and close throttlecntrl_extfunccall.mdl and
rtwdemo_throttlecntrl_testharness.mdl.

Calling a C Function from Generated Code
The code generator uses a TLC file to process the S-Function block. Calls to C
code embedded in an S-Function block:

• Can use data objects.

• Are subject to expression folding, an operation that combines multiple
computations into a single output calculation.

1 Open rtwdemo_throttlecntrl_extfunccall.mdl.

2 Generate code for the model.

3 Examine the generated code in the filethrottlecntrl_extfunccall.c.

The following code fragment shows code for a Lookup Table block before
you replaced the block with the external SimpleTable function:

throttlecntrl_extfunccall_B.Discrete_Time_Integrator1 = throttlecntrl_extfunccall_P.I_Gain *

rt_Lookup((const real_T *)throttlecntrl_extfunccall_P.I_InErrMap, 9, rtb_Sum3,

(const real_T *)throttlecntrl_extfunccall_P.I_OutMap) * rtb_Sum3 * 0.001 +

throttlecntrl_extfunccall_DWork.Discrete_Time_Integrator1_DSTAT;

After you integrate the SimpleTable function, the generated code appears
as follows:

throttlecntrl_extfunccall_B.Discrete_Time_Integrator1 = throttlecntrl_extfunccall_P.I_Gain *

SimpleTable((real_T)rtb_Sum2, (real_T*)throttlecntrl_extfunccall_P.I_InErrMap, (real_T*)

throttlecntrl_extfunccall_P.I_OutMap, (int16_T)9) * rtb_Sum2 * 0.001 +

throttlecntrl_extfunccall_DWork.Discrete_Time_Integrator1_DSTAT;

4 Close throttlecntrl_extfunccall.mdl and
throttlecntrl_testharness.mdl.

Key Points

• You can easily integrate external functions into a model and generated
code by using the Legacy Code Tool.

2-44

Calling External C Functions from a Model and Generated Code

• Always validate the functionality of external C function code which you
integrate into a model as a standalone component.

• After you validate the functionality of external C function code as a
standalone component, validate the S-function in the model.

Learn More

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Simulink documentation

• “S-Function Code Insertion ” in the Simulink Coder documentation

2-45

2 Getting Started Examples

2-46

Index

IndexA
accelerated simulation

as an application of code generation
technology 1-7

algorithm development
tools for 1-9

application requirements 1-12

C
Code generation from MATLAB

for algorithm development 1-9
Code generation technology

applications of 1-7
introduction to 1-3
products associated with 1-3

configuration parameters 1-14
questions to consider 1-13

D
dialog boxes

Configuration Parameters 1-12
Model Explorer 1-14

E
embedded microprocessor

as target environment 1-4

H
hardware-in-the-loop (HIL) testing

as an application of code generation
technology 1-7

compared with other types of in-the-loop
testing 1-28

host computer
as target environment 1-4

host-based simulation

compared to standalone rapid simulations
and prototyping 1-26

I
in-the-loop testing

types of 1-28

M
make utility 1-18
Model Advisor 1-15
model intellectual property protection

as an application of code generation
technology 1-7

O
on-target rapid prototyping

as an application of code generation
technology 1-7

P
processor-in-the-loop (PIL) testing

as an application of code generation
technology 1-7

compared with other types of in-the-loop
testing 1-28

production code generation
as an application of code generation

technology 1-7
prototyping

types of 1-26

R
rapid prototyping

as an application of code generation
technology 1-7

Index-1

Index

compared to simulations and on-target
prototyping 1-26

rapid simulation
as an application of code generation

technology 1-7
rapid simulations, standalone

compared to host-based simulations and
prototyping 1-26

real-time simulator
as target environment 1-4

S
simulation

types of 1-26
Simulink

for algorithm development 1-9
software-in-the-loop (SIL) testing

as an application of code generation
technology 1-7

compared with other types of in-the-loop
testing 1-28

system simulation
as an application of code generation

technology 1-7

T
target environments 1-4
target-based (on-target) rapid prototyping

compared to simulations and rapid
prototyping 1-26

testing
types of 1-28

V
V-model

applying code generation technology to 1-25

Index-2

	toc
	Product Overview
	Product Description
	Code Generation Technology
	Target Environments and Applications
	About Target Environments
	Types of Target Environments Supported By Simulink Coder
	Applications of Supported Target Environments

	Algorithm Development Options
	Simulink and Stateflow Model
	About the Workflow
	Mapping Application Requirements to Configuration Options
	Adjusting Configuration Settings
	Running the Model Advisor
	Generating Code
	Verifying the Generated Code
	Building an Executable Program
	Verifying the Executable Program
	Naming and Saving the Configuration Set
	Documenting the Project

	MATLAB Code with Simulink Model

	V-Model for System Development
	What Is the V-Model?
	Types of Simulation and Prototyping in the V-Model
	Types of In-the-Loop Testing in the V-Model
	Mapping of Code Generation Goals to the V-Model

	Getting Started Examples
	About the Examples
	Introduction
	Prerequisites
	Required Files

	Getting Familiar with the Example Model and Testing Environment
	About This Example
	Learning Objectives
	Prerequisites
	Required Files

	Understanding the Functional Design of the Model
	Viewing the Top Model
	Viewing the Subsystems
	Understanding the Simulation Testing Environment
	Checking the Model for Adverse Conditions and Simulation Setting
	Running Simulation Tests
	Key Points
	Learn More

	Configuring the Model and Generating Code
	About This Example
	Learning Objectives
	Prerequisites
	Required Files

	Configuring the Model for Code Generation
	Saving Your Model Configuration as a MATLAB Function
	Checking the Model for Adverse Conditions and Code Generation Se
	Generating Code for the Model
	Reviewing the Generated Code
	Generating an Executable
	Key Points
	Learn More

	Configuring the Data Interface
	About This Example
	Learning Objectives
	Prerequisites
	Required File

	Declaring Data
	Using Data Objects
	Adding New Data Objects
	Enabling Data Objects for Generated Code
	Effects of Simulation on Data Typing
	Managing Data
	Key Points
	Learn More

	Calling External C Functions from a Model and Generated Code
	About This Example
	Learning Objectives
	Prerequisites
	Required Files

	Including External C Functions in a Model
	Creating a Block That Calls a C Function
	Validating External Code in the Simulink Environment
	Validating C Code as Part of a Model
	Calling a C Function from Generated Code
	Key Points
	Learn More

	Index

	tables
	Documenting and Validating Requirements
	Developing a Model Executable Specification
	Developing a Detailed Software Design
	Generating the Application Code
	Integrating and Verifying Software
	Integrating, Verifying, and Calibrating System Components
	Supported Data Types

